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In a quantum antiferromagnet (AFM) a fully spin-
polarized state can be reached at high magnetic
field B exceeding a saturation field Bc. In this state,
spin excitations are gapped ferromagnetic mag-
nons. With decreasing B and passing through Bc, an
antiferromagnetic long-range order of the trans-
verse spin component develops. Provided the sym-
metry of the spin Hamiltonian is such that the rota-
tional invariance around the applied field is pre-
served, the transverse spin component ordering can
be regarded as a Bose-Einstein condensation
(BEC) in a dilute gas of antiferromagnetic
magnons [1,2]. For most of the known AFMs, Bc
can be well above 100 T. An exceptionally low and
easily accessible saturation field of Bc � 8.5 T is,
however, needed in the quantum spin-1/2 AFM
Cs2CuCl4. In this system the dominant exchange
spin coupling J is rather weak, J = 4.34(6) K [3].
The other isotropic spin coupling constants and the
anisotropic Dzyaloshinsky-Moriya (DM) interac-
tion are smaller and were determined with high
accuracy by neutron scattering experiments [3].
Thus, the spin Hamiltonian involves the isotropic
exchange H0, the DM anisotropic term HDM and the
Zeeman energy HB.

Cs2CuCl4 falls into the class of easy-plane AFMs
with U(1)-rotational invariance around the crystal-
lographic a-axis. Thus, for B applied along the a-
axis, the U(1) symmetry can be broken sponta-
neously due to the transverse spin component
ordering at Tc. This is accompanied by the appear-
ance of a Goldstone mode with linear dispersion,
which is interpreted as signature of a magnon
BEC [3]. However, an unambiguous evidence for a
BEC description of the field-induced phase transi-
tion would be the determination of the critical
exponent � in the field dependence of the critical
temperature

Tc(B) � (Bc–B)1/�. (1)
Theory for a 3D Bose gas predicts a universal value
�BEC =3/2 [4], which coincides with the result of a
mean-field treatment [5].
We performed specific-heat measurements on sin-
gle crystals of Cs2CuCl4 at low temperatures
(30 mK < T < 6 K) and magnetic fields applied

along the crystallographic a-axis [6]. Figure 1
shows the magnetic contribution, Cmag(T), to the
total specific heat of Cs2CuCl4 at fields close to Bc.
The �-like anomaly in Cmag(T) is gradually sup-
pressed in its height, and its position is pushed to
lower temperatures with increasing field upon
approaching the critical field Bc 	 8.5 T. For
B > Bc the ordering of the transverse component of
the magnetic moment completely disappears since
the spin system enters a field-induced ferromagnet-
ic (FM) state [3]. For the interpretation of the phase
transition below Bc as a BEC of magnons it is cru-
cial that the gap in the ferromagnetic magnon exci-
tation spectrum present above Bc closes as Bc is
approached from high fields. The compelling evi-
dence for this is presented in the inset to Fig. 1.
Assuming a 2D quadratic magnon dispersion, the
leading contribution to the temperature dependence
of the specific heat is given by Cmag 	
exp(–�/T)/T, provided that T < �. As shown in the
inset to Fig. 1, this behavior fits well the experi-
mental data above 0.3 K.
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Fig. 1: Magnetic specific heat, Cmag vs. T of Cs2CuCl4
close to the critical field. Inset: Semi-logarithmic plot of
CmagT vs. 1/T of Cs2CuCl4 for fields above Bc. In this
representation the slope of the data (solid lines) yields
the value of the gap � present in the magnon excitation
spectrum.
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This analysis leads to the (T, B) phase diagram of
Cs2CuCl4 presented in Fig. 2. Tc starts to decrease
strongly above 8 T and Tc → 0 for B → Bc. Fitting
the power law dependence Tc(B) � (Bc–B)1/� to the
data for B � 8 T with the assumption of Bc = 8.50 T
yields an exponent � = 1.52(10). The linear extra-
polation � → 0 of the field dependence of the gap
yields Bc = 8.3(10) T and g = 2.31(15). The rela-
tively large errors are due to the uncertainties in the
fit. It is noteworthy that the experimental data and
the solid line plotted in the inset to Fig. 2 are in
excellent agreement. Our theoretical analysis of the
data is described below. 

To treat the observed phase transition slightly
below the saturation field Bc as a BEC of magnons
[1,2,5] we used the hard-core boson representation
for spin-1/2 operators Si

�, Si
z in the original

Hamiltonian H. Due to the sign change of the DM
interaction (D = 0.053(5) J [3]) between even and
odd magnetic layers, which are stacked along the
a-direction, two types of bosons, ai and bj are intro-
duced for the two types of layers [7]. The hard-core
boson constraint was satisfied by adding to H an
infinite on-site repulsion, U → �, between bosons:

The interlayer coupling J	= 0.045(5) J [3] mixes
a and b boson modes and results in two bare
magnon excitation branches A and B. Their disper-
sion relations are [3] 

with

Here J
 = 0.34(3) J [3] and the q-values are restrict-
ed to 0 � qx < 2�, 0 � qy < 4�, and 0 � qz < 2�.

The degenerate minima EA
Q1

= EB
Q2

= 0 are at Q1 =
(� + 1,0,0) for branch A and Q1 = (� – 2,2�,0) for
branch B. Without loosing precision we can use 1	
2 	 2 arcsin (J
/2J).Then the bilinear part of H is

with Aq= �qaq + �qbq, Bq= �qbq + �qaq, �q
2+�q

2 =1,
and �0 = g�B(Bc–B) the bare chemical potential.
Bc= W/(g�B), with W being the magnon bandwidth,
was calculated to be Bc = 8.51 T assuming
g = 2.20 [7].

The interaction given by eq. 2 describes the scat-
tering of A and B magnons. Near the quantum crit-
ical point, (Bc–B) � Bc and at low temperature, the
average density of magnons n A = nB = n is low,
n ~ (1–B/Bc). The magnon scattering can be treated
in the ladder approximation, neglecting interfer-
ence between a and b channels. In this approxima-
tion, the problem reduces to solving the Bethe-
Salpeter equation in each channel. 

For a given B � Bc and with decreasing tempera-
ture the magnon BEC occurs when the effective
chemical potential �eff vanishes [5]. Then Tc(B) is
determined by

g�B(Bc–B) = 2�n(Tc). (8)
Here n(T) =
q fB(Eq) with fB(Eq) being the Bose
distribution function taken at �eff = 0 and Eq= Eq

Aor
Eq= Eq

B. This means that for T < Tc the magnon con-
densate develops simultaneously at q = Q1,2. It is
worth emphasizing that at �eff → 0 the distribution
function fB(E) diverges as T/E for E → 0. There-
fore, the low energy 3D-magnon spectrum, E < E*,
mainly contributes and drives the BEC transition.
The phase boundary can be calculated using eq. 8.
It gives a very good description of the experimen-
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Fig. 2: (T, B) phase diagram of Cs2CuCl4 for B � a.
Upon approaching the critical field Bc = 8.51 T the
ordering temperature Tc approaches 0 K. Above Bc the
gap � in the spin excitation spectrum opens. Inset: The
experimental Tc(B) data points and the calculated phase
boundary of the BEC of magnons (solid line) are in very
good agreement.
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tal data near Bc (see inset to Fig. 2), but deviates
strongly at lower fields, i.e., for Bc–B > 0.5 T. This
indicates that the mean-field description of the
magnon BEC is only applicable in the close vicin-
ity of Bc. The calculated boundary is well described
by eq. 1 with a critical exponent �th 	 1.5 close to
the predicted value �BEC = 3/2 characteristic for 3D
quadratic dispersion of low-energymagnons.
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